Saturday, October 20, 2012

circadian rhythms with the purpose of protecting the replicating of DNA



Overview of biological circadian clock in humans.
Biological clock affects the daily rhythm of many physiological processes. This diagram depicts the circadian patterns typical of someone who rises early in morning, eats lunch around noon, and sleeps at night (10 p.m.). Although circadian rhythms tend to be synchronized with cycles of light and dark, other factors - such as ambient temperature, meal times, stress and exercise - can influence the timing as well.



Photosensitive proteins and circadian rhythms are believed to have originated in the earliest cells, with the purpose of protecting the replicating of DNA from high ultraviolet radiation during the daytime. As a result, replication was relegated to the dark. The fungus Neurospora, which exists today, retains this clock-regulated mechanism.

Circadian rhythms allow organisms to anticipate and prepare for precise and regular environmental changes; they have great value in relation to the outside world. The rhythmicity appears to be as important in regulating and coordinating internal metabolic processes, as in coordinating with the environment.This is suggested by the maintenance (heritability) of circadian rhythms in fruit flies after several hundred generations in constant laboratory conditions, as well as in creatures in constant darkness in the wild, and by the experimental elimination of behavioral but not physiological circadian rhythms in quail

The simplest known circadian clock is that of the prokaryotic cyanobacteria. Recent research has demonstrated that the circadian clock of Synechococcus elongatus can be reconstituted in vitro with just the three proteins of their central oscillator. This clock has been shown to sustain a 22-hour rhythm over several days upon the addition of ATP. Previous explanations of the prokaryotic circadian timekeeper were dependent upon a DNA transcription/translation feedback mechanism.

A defect in the human homologue of the Drosophila "period" gene was identified as a cause of the sleep disorder FASPS (Familial advanced sleep phase syndrome), underscoring the conserved nature of the molecular circadian clock through evolution. Many more genetic components of the biological clock are now known. Their interactions result in an interlocked feedback loop of gene products resulting in periodic fluctuations that the cells of the body interpret as a specific time of the day.

It is now known that the molecular circadian clock can function within a single cell; i.e., it is cell-autonomous. At the same time, different cells may communicate with each other resulting in a synchronized output of electrical signaling. These may interface with endocrine glands of the brain to result in periodic release of hormones. The receptors for these hormones may be located far across the body and synchronize the peripheral clocks of various organs. Thus, the information of the time of the day as relayed by the eyes travels to the clock in the brain, and, through that, clocks in the rest of the body may be synchronized  This is how the timing of, for example, sleep/wake, body temperature, thirst, and appetite are coordinately controlled by the biological clock.

No comments:

Post a Comment